Pulsed Power Technology and High Power Electromagnetics|5 Article(s)
Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target
Yadong Xia, Feng Zhang, Hongbo Cai, Weimin Zhou, Chao Tian, Bo Zhang, Dongxiao Liu, Tao Yi, Yilin Xu, Feng Wang, Tingshuai Li, and Shaoping Zhu
Powerful lasers interacting with solid targets can generate intense electromagnetic pulses (EMPs). In this study, EMPs produced by a pulsed laser (1 ps, 100 J) shooting at CH targets doped with different titanium (Ti) contents at the XG-III laser facility are measured and analyzed. The results demonstrate that the intensity of EMPs first increases with Ti doping content from 1% to 7% and then decreases. The electron spectra show that EMP emission is closely related to the hot electrons ejected from the target surface, which is confirmed by an analysis based on the target–holder–ground equivalent antenna model. The conclusions of this study provide a new approach to achieve tunable EMP radiation by adjusting the metal content of solid targets, and will also help in understanding the mechanism of EMP generation and ejection of hot electrons during laser coupling with targets.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2020
  • Vol. 5, Issue 1, 017401 (2020)
Review of the relativistic magnetron
Dmitrii Andreev, Artem Kuskov, and Edl Schamiloglu
The cavity magnetron is the most compact, efficient source of high-power microwave (HPM) radiation. The imprint that the magnetron has had on the world is comparable to the invention of the nuclear bomb. High- and low-power magnetrons are used in many applications, such as radar systems, plasma generation for semiconductor processing, and—the most common—microwave ovens for personal and industrial use. Since the invention of the magnetron in 1921 by Hull, scientists and engineers have improved and optimized magnetron technology by altering the geometry, materials, and operating conditions, as well as by identifying applications. A major step in advancing magnetrons was the relativistic magnetron introduced by Bekefi and Orzechowski at MIT (USA, 1976), followed by the invention of the relativistic magnetron with diffraction output (MDO) by Kovalev and Fuks at the Institute of Applied Physics (Soviet Union, 1977). The performance of relativistic magnetrons did not advance significantly thereafter until researchers at the University of Michigan and University of New Mexico (UNM) independently introduced new priming techniques and new cathode topologies in the 2000s, and researchers in Japan identified a flaw in the original Soviet MDO design. Recently, the efficiency of the MDO has reached 92% with the introduction of a virtual cathode and magnetic mirror, proposed by Fuks and Schamiloglu at UNM (2018). This article presents a historical review of the progression of the magnetron from a device intended to operate as a high-voltage switch controlled by the magnetic field that Hull published in 1921, to the most compact and efficient HPM source in the twenty-first century.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2019
  • Vol. 4, Issue 6, 067201 (2019)
Spectral and amplitude-time characteristics of crystals excited by a runaway electron beam
V. F. Tarasenko, M. I. Lomaev, E. Kh. Baksht, D. V. Beloplotov, A. G. Burachenko, D. A. Sorokin, and E. I. Lipatov
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2019
  • Vol. 4, Issue 3, 037401 (2019)
Investigation of wire-array Z-pinches by laser probing diagnostics
V. V. Ivanov, A. A. Anderson, and D. Papp
Laser diagnostics provides powerful tools for the investigation of dense Z-pinches. In this paper, wire-array Z-pinches are investigated at the 1 MA Zebra generator using laser diagnostics at different wavelengths coupled with x-ray diagnostics. Plasma dynamics during the ablation, implosion, and stagnation stages are observed by multiframe diagnostics. Cascading and nonprecursor implosions are studied in wire arrays. Ultraviolet diagnostics allows deep penetration into the Z-pinch plasma at stagnation. End-on probing reveals the complicated structure of the precursor. Strong magnetohydrodynamic instabilities are found in a dense pinch hidden in the trailing plasma. Small-scale instabilities are seen in the Z-pinch plasma with micrometer resolution. Probing of the pinch from four directions shows asymmetrical trailing plasma in some configurations of wire arrays. Faraday rotation diagnostics reveals the magnetic fields and the current distribution in the plasma of the precursor and Z-pinch. Redistribution of current in the trailing plasma is seen during kink and sausage instabilities in the stagnation stage. The formation of micropinches and hot spots in the Z-pinch is analyzed with coupled laser and x-ray diagnostics. Different laser diagnostics allow the study of Z-pinch plasmas in all stages, including fast dynamics and instabilities.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2019
  • Vol. 4, Issue 1, 017401 (2019)
Research at Tsinghua University on electrical explosions of wires
Xinxin Wang
Electrical explosion of a wire (EEW) has been investigated for more than ten years at Tsinghua University, and the main results are reviewed in this paper. Based on EEW in vacuum, an X-pinch was used as an x-ray source for phase-contrast imaging of small insects such as mosquitoes and ants in which it was possible to observe clearly their detailed internal structures, which can never be seen with conventional x-ray radiography. Electrical explosion of a wire array (EEWA) in vacuum is the initial stage in the formation of a wire-array Z-pinch. The evolution of EEWA was observed with x-ray backlighting using two X-pinches as x-ray sources. It was found that each wire in an EEWA exhibits a core–corona structure instead of forming a fully vaporized metallic vapor. This structure is detrimental to the plasma implosion of a Z-pinch. By inserting an insulator as a flashover switch into the cathode, formation of a core–corona structure was suppressed and core-free EEWA was realized. EEW in gases was used for nanopowder production. Three parameters (vaporization rate, gas pressure, and energy deposited in the exploding plasma) were found to influence the nanoparticle size. EEW in water was used for shock-wave generation. The shock wave generated by melting could be recorded with a piezoelectric gauge only in underheat EEW. For EEW with a given stored energy but different energy-storage capacitor banks, the small capacitor bank produced a rapidly rising current that deposited more energy into the wire and generated a stronger shock wave.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2019
  • Vol. 4, Issue 1, 017201 (2019)